1	$X \sim B(17, 0.2)$		
(i)	$P(X \ge 4) = 1 - P(X \le 3)$	B1 for 0.5489	
	= 1 - 0.5489 = 0.4511	M1 for 1 – their 0.5489	3
		A1 CAO	-
(ii)	$E(X) = np = 17 \times 0.2 = 3.4$	M1 for product	2
`		A1 CAO	
(iii)	P(X = 2) = 0.3096 - 0.1182 = 0.1914		
, ,	P(X = 3) = 0.5489 - 0.3096 = 0.2393	B1 for 0.2393	
	P(X = 4) = 0.7582 - 0.5489 = 0.2093	B1 for 0.2093	3
	So 3 applicants is most likely	A1 CAO <i>dep</i> on both	
		B1s	
(iv)	(A) Let $p =$ probability of a randomly selected maths graduate	B1 for definition of <i>p</i> in	
Ì,	applicant being successful (for population)	context	
	$H_0: p = 0.2$		
	$H_1: p > 0.2$	B1 for H_0	
	(B) that this form as the suggestion is that mathematics	B1 for H_1	4
	graduates are more likely to be successful.	E1	
	8		
(v)	Let $X \sim B(17, 0.2)$	B1 for 0.1057	
	$P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8943 = 0.1057 > 5\%$	B1 for 0.0377	
	$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9623 = 0.0377 < 5\%$	M1 for at least one	
		comparison with 5%	4
	So critical region is {7,8,9,10,11,12,13,14,15,16,17}	A1 CAO for critical	
		region <i>dep</i> on M1 and at	
		least one B1	
(vi)	Because $P(X \ge 6) = 0.1057 > 10\%$	E1	
Ì	Either: comment that 6 is still outside the critical region		2
	Or comparison $P(X \ge 7) = 0.0377 < 10\%$	E1	
		TOTAL	18

		1	
2	(A) P(both) = $\left(\frac{2}{3}\right)^2 = \frac{4}{9}$	B1 CAO	
(i)	(B) P(one) = $2 \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$	B1 CAO	
		B1 CAO	
	(C) P(neither) = $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$		3
(ii)	Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates.	E1	
	May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. <i>NB Allow valid alternatives</i>	E1	2
(iii)	Expected number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)	B1 FT	
	$E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$	M1 for $E(X^2)$	
	$Var(X) = \frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444$	A1 CAO	3
(1)	NB use of npq scores M1 for product, A1CAO		
(iv)	Expect $200 \times \frac{8}{9} = 177.8$ plants	M1 for 200 $\times \frac{8}{9}$	
	So expect 0.85 × 177.8 = 151 onions	M1 dep for × 0.85 A1 CAO	3
(v)	Let $X \sim B(18, p)$ Let p = probability of germination (for population) H ₀ : $p = 0.90$ H ₁ : $p < 0.90$	B1 for definition of p B1 for H ₀ B1 for H ₁	
	$P(X \le 14) = 0.0982 > 5\%$ So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.	M1 for probability M1 dep for comparison A1 E1 for conclusion in context	7
	Note: use of critical region method scores M1 for region {0,1,2,, 13} M1 for 14 does not lie in critical region then A1 E1 as per scheme		
		TOTAL	18
		l	

3	$P(X = 2) = {3 \choose 2} \times 0.87^2 \times 0.13 = 0.2952$	M1 0.87 ² x 0.13	
(i)		M1 $\binom{3}{2}$ x $p^2 q$ with p+q=1 A1 CAO	3
(ii)	In 50 throws expect 50 (0.2952) = 14.76 times	B1 FT	1
(iii)	P (two 20's twice) = $\binom{4}{2} \times 0.2952^2 \times 0.7048^2 = 0.2597$	M1 $0.2952^2 \times 0.7048^2$ A1 FT their 0.2952	2
		TOTAL	6

4	<i>X</i> ~ B(20, 0.1)		
(i)	(A) $P(X = 1) = {\binom{20}{1}} \times 0.1 \times 0.9^{19} = 0.2702$	M1 0.1 x 0.9 ¹⁹	
	$(A) - 1(A - 1) - (1)^{-1}(A - 1) - (1)^{-1}(A - 1)^{-1}(A - 1)^{$	M1 $\binom{20}{1}$ x pq^{19}	
		A1 CAO	
	OR from tables $0.3917 - 0.1216 = 0.2701$	OR: M2 for 0.3917 – 0.1216 A1 CAO	3
	(B) $P(X \ge 1) = 1 - 0.1216 = 0.8784$	M1 P(X=0) provided that $P(X \ge 1)=1-P(X \le 1)$ not seen	2
		M1 1-P(X=0) A1 CAO	3
(ii)	EITHER: $1 - 0.9^n \ge 0.8$ $0.9^n \le 0.2$ Minimum $n = 16$	M1 for 0.9 ⁿ M1 for inequality A1 CAO	
	OR (using trial and improvement): Trial with 0.9^{15} or 0.9^{16} or 0.9^{17} $1 - 0.9^{15} = 0.7941 < 0.8$ and $1 - 0.9^{16} = 0.8147 > 0.8$	M1 M1	
	Minimum $n = 16$	A1 CAO	
	NOTE: $n = 16$ unsupported scores SC1 only		3
(iii)	(A) Let p = probability of a randomly selected rock containing a fossil (for population) H ₀ : p = 0.1	B1 for definition of p B1 for H ₀ B1 for H ₁	
	$H_1: p < 0.1$		3
	(B) Let $X \sim B(30, 0.1)$ $P(X \le 0) = 0.0424 < 5\%$ $P(X \le 1) = 0.0424 + 0.1413 = 0.1837 > 5\%$ So critical region consists only of 0.	M1 for attempt to find $P(X \le 0)$ or $P(X \le 1)$ using binomial M1 for both attempted M1 for comparison of either of the above with 5%	
		A1 for critical region dep on both comparisons (NB Answer given)	4
	(C)	M1 for comparison	
	2 does not lie in the critical region.	A1 for conclusion in	
	So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area	context	
	contain fossils.	TOTAL	2
		TOTAL	18